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SUMMARY
Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immunemediators, but the
role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated.We scrutinized the pro-
duction of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a
lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease
risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology
and efficiently drives the transcription of genes that protect against severe acute respiratory syndromecorona-
virus2 (SARS-CoV-2). Incontrast, compared tosubjectswithother infectiousornoninfectious lungpathologies,
IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways
associatedwith increasedapoptosis anddecreasedproliferation. Our data demonstrate a dynamic production
of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.
INTRODUCTION

Since the outbreak of the coronavirus disease 2019 (COVID-19)

in late 2019, the novel, severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) has infected over 188 million people

globally and caused more than 4 million deaths as of July

2021. SARS-CoV-2 infection can lead to acute respiratory

distress syndrome (ARDS) characterized by elevated levels of
proinflammatory cytokines in the bloodstream (Guan et al.,

2020; Lee et al., 2020; Lucas et al., 2020; Zhou et al., 2020a).

Mouse models and retrospective human studies suggest that

severity and death following a SARS-CoV-2 encounter is corre-

lated with exaggerated inflammation rather than viral load (Ber-

gamaschi et al., 2021; Guan et al., 2020; Karki et al., 2021; Lee

et al., 2020; Lucas et al., 2020; Ruan et al., 2020; Winkler et al.,

2020; Zhou et al., 2020a). Nevertheless, how a balance between
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the benefits (restricting viral replication and spread) and risks

(inducing a cytokine storm) of efficient immune cell activation is

achieved during COVID-19 remains a mystery.

Of the many inflammatory mediators produced upon infection

with SARS-CoV-2, interferons (IFNs) have attracted much atten-

tion since the inception of the pandemic. IFNs belong to three

major families: type I (IFN-I; mainly represented by IFN-as and

IFN-b), IFN-II (IFN-g), and IFN-III (IFN-l1-4). Upregulation of

IFN-II in patients with severe COVID-19 (Karki et al., 2021; Lucas

et al., 2020) is associated with increased PANoptosis, which ex-

acerbates pathology and death (Karki et al., 2021). In contrast,

the roles of IFN-I and IFN-III during SARS-CoV-2 infection have

been a matter of debate. Indeed, IFN-I and IFN-III exert potent

antiviral functions via the induction of IFN-stimulated genes

(ISGs). Several studies showed that SARS-CoV-2, compared

to other viruses, boosts the production of inflammatory media-

tors while delaying and/or dampening antiviral IFN responses

in patients with severe COVID-19 (Blanco-Melo et al., 2020; Gal-

ani et al., 2021; Hadjadj et al., 2020;Mudd et al., 2020). Neverthe-

less, regulation of IFN-I and IFN-III production following infection

with SARS-CoV-2 appears to bemore complex. In fact, analyses

of nasopharyngeal swabs (Cheemarla et al., 2021; Lieberman

et al., 2020; Ziegler et al., 2021), bronchoalveolar lavage fluid

(BALF) (Zhou et al., 2020b), or peripheral blood monocytes

(Lee et al., 2020) of COVID-19 patients have revealed potent

ISG induction. Production of IFNs is also sustained in the blood

of a longitudinal cohort of severe COVID-19 patients compared

to subjects with a mild illness (Lucas et al., 2020).

Aside from the challenge of understanding the pattern of

expression of IFNs, a major unanswered question is whether

IFNs serve protective or detrimental functions in COVID-19.

Recent studies show that patients with severe COVID-19 have

defective IFN responses (Bastard et al., 2020; Combes et al.,

2021; Laing et al., 2020; Pairo-Castineira et al., 2021; Wang

et al., 2021; Zhang et al., 2020). Other studies, however, report

that heightened and prolonged production of IFNs in patients in-

fected with SARS-CoV-2 is correlated with negative clinical out-

comes (Lee et al., 2020; Lucas et al., 2020). We and others have

also recently demonstrated that the production of IFN-III, and to

a lesser extent IFN-I, impairs lung function and may trigger a se-

vere disease in mouse models of lung viral infections (Broggi

et al., 2020a; Major et al., 2020). Thus, it is urgent to fully unravel

the role of IFNs in the pathogenesis of COVID-19.

To define how IFN production impacts the progression of

COVID-19, here, we analyzed the pattern and level of expression

of IFNs and the transcriptional programs associated with the IFN

landscape in the upper or lower respiratory tract of COVID-19

patients, subjects with infectious and noninfectious lung dis-

eases, and healthy controls.

RESULTS

High viral loads drive the efficient production of IFN-III,
and to a lesser extent IFN-I, in an age-dependentmanner
in the upper airways of COVID-19 patients
We initially analyzed IFN gene expression in nasopharyngeal

swabs derived from SARS-CoV-2-positive and negative sub-

jects (Table S1; Figures S1A–S1C) and found that in subjects
2 Cell 184, 1–16, September 16, 2021
positive for SARS-CoV-2, IFNL1 and IFNL2,3 (among IFN-IIIs)

and IFNB1 and IFNA2 (among IFN-Is) were significantly upregu-

lated (Figures 1A–1F). As controls, IL1B and IL6 were also

analyzed in the same cohort of subjects (Figures S1D and

S1E). To account for the bimodal distribution of cytokine gene

expression, we transformed gene expression data in discrete

variables (expressed or undetected) and obtained results similar

to what we observed with continuous gene expression (Figures

S1F–S1M).

Next, we examined the distribution of IFN levels relative to the

viral load. Of the IFN-III family members, IFN-l1 and IFN-l2,3

positively correlated with viral load (Figures 1G–1I). Among

IFN-Is, IFN-b and IFN-a4 also showed a positive correlation

with the viral load (Figures 1J–1L). Transcript levels of the proin-

flammatory cytokines IL1B and IL6 were also positively corre-

lated with the viral load (Figures S1N–S1O). Next, we divided

our patient cohort into terciles based on the viral load (Table

S1) and analyzed gene expression using discrete variables.

These analyses confirmed that IFN-l1, IFN-l2,3, IFN-b, inter-

leukin-1b (IL-1b), and IL-6 were preferentially expressed in high

(compared to low) viral load samples (Figures S1P–S1W).

We then evaluated how IFN gene expression relates to the age

of patients, a key determinant of severity and lethality of COVID-

19 (McPadden et al., 2020; Williamson et al., 2020). Our analyses

demonstrated that IFN-III and IFN-I expression is significantly

associated with viral load for the cohort of patients aged <70

years (Figures 1M–1R). In contrast, IFN expression in the cohort

of patients aged R70 years either completely lost association

with the viral load and/or showed a significantly lower correlation

coefficient compared to the <70 years cohort (Figures 1M–1R).

IL-1b and IL-6 maintained their association with viral load inde-

pendent of age and were not significantly different in the two

age cohorts (Figures S1X and S1Y). When we analyzed gene

expression as a discrete variable, we found that response pat-

terns to viral load were significantly different between elderly

(R70 years) and younger (<70 years) patients for IFN-l2,3 and

IFN-a4 (Figures S1Z–S1AE; Table S2). This analysis also showed

that only younger patients have a dose-response relationship

between IFN gene expression and viral load. In contrast to

IFNs, no difference in the dose-response relationship between

IL-1b and IL-6 expression and viral load was observed between

age groups (Figures S1AF and S1AG; Table S2). These results

indicate that in COVID-19 patients, the production of IFNs corre-

lates with the viral load in the upper respiratory tract and that

elderly patients, who are at risk of developing severe disease,

have dysregulated IFN induction, which correlates more loosely

with the viral load, compared to younger patients.

Mild COVID-19 is characterized by high levels of IFN-III,
but not IFN-I, in response to high viral loads in the upper
airways
To explore the link between IFN production and disease

severity, we analyzed nasopharyngeal swabs from a subset

of patients with known clinical follow-up. Disease severity

was assessed as follows: patients with mild disease manifesta-

tions discharged from the emergency room without being

hospitalized (home isolated [HI]), severe patients who required

hospitalization (hospitalized [HOSP]), and critically ill patients
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Figure 1. High viral loads drive the efficient production of IFN-III and, to a lesser extent, IFN-I in an age-dependent manner in the upper

airways of COVID-19 patients

(A–F) IFNL1 (A), IFNL2,3 (B), IFNL4 (C), IFNB1 (D), IFNA2 (E), and IFNA4 (F) mRNA expression was evaluated in nasopharyngeal swabs from SARS-CoV-2-negative

(Swab NEG; 28) and positive (Swab POS; 155) subjects. Each dot represents a patient. Median with range is depicted. Dashed line represents limit of detection.

(G–L) IFNL1 (G), IFNL2,3 (H), IFNL4 (I), IFNB1 (J), IFNA2 (K), and IFNA4 (L) mRNA expression is plotted against mean viral RNA cycle threshold (CT) in swabs from

SARS-CoV-2-positive patients (155). Each dot represents a patient. Linear regression lines (continuous line) and 95% confidence interval (dashed line and

shaded area) are depicted in red. Spearman correlation coefficients (r) and p value (p) are indicated. Dashed horizontal black line represents limit of detection.

(M–R) IFNL1 (M), IFNL2,3 (N), IFNL4 (O), IFNB1 (P), IFNA2 (Q), and IFNA4 (R) mRNA expression is plotted against mean viral RNA CT in swabs from SARS-CoV-2-

positive patients agedR70 years (61, blue dots and lines) and <70 years (94, orange dots and lines). Each dot represents a patient. Linear regression (continuous

lines) and 95% confidence interval (dashed line and shaded area) are depicted. Spearman correlation coefficients (r) and p value (p) are indicated in blue and

orange for patients R70 and <70 years, respectively. Dashed horizontal black line represents limit of detection.

(A–R) Expression is plotted as log2 (gene/GAPDHmRNA+ 0.53 gene-specificminimum). Statistics byMann-Whitney test: ns, not significant (p > 0.05); *p < 0.05;

**p < 0.01; ***p < 0.001; ****p < 0.0001 (A–F) or test for difference between simple linear regression slopes: ns, not significant (p > 0.05); *p < 0.05; **p < 0.01; ***p <

0.001; ****p < 0.0001 (M–R). See also Figure S1 and Table S1.
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admitted to the intensive care unit (ICU) (Table S3). When gene

expression levels were plotted against the viral load in HI

versus HOSP/ICU (Figures 2A–2H), patients with a mild disease

showed a positive correlation with expression of several mem-

bers of the IFN-III family (Figures 2A–2C). In HOSP/ICU pa-
tients, this correlation was lost for IFN-l2,3 and was signifi-

cantly reduced for IFN-l1 compared to HI patients (Figures

2A and 2B). In contrast to IFN-III, the positive correlation be-

tween IL6 levels and viral load was maintained only for HOSP

and ICU patients (Figure 2H). When members of the IFN-I family
Cell 184, 1–16, September 16, 2021 3
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Figure 2. Mild COVID-19 is characterized by high levels of IFN-III, but not IFN-I, in response to high viral loads in the upper airways

(A–M) Swabs from a cohort of SARS-CoV-2-positive hospitalized patients and ICU inpatients (HOSP, black dots; ICU, red dots; both HOSP and ICU, black lines

and analyzed together) and home-isolated patients (HI, green dots and lines) were analyzed.

(A–H) IFNL1 (A), IFNL2,3 (B), IFNL4 (C), IFNB1 (D), IFNA2 (E), IFNA4 (F), IL1B (G), and IL6 (H) mRNA expression is plotted against mean viral RNA CT. Each dot

represents a patient. Linear regression lines (continuous line) and 95% confidence interval (dashed line and shaded area) are depicted. Spearman correlation

coefficients (r) and p value (p) are indicated in black and in green for ‘‘HOSP + ICU’’ and ‘‘HI’’ patients respectively.

(I)MeanviralRNACTvalues are plottedagainst days fromsymptomonset (DFSO). Eachdot represents a patient. Linesconnectmean values for each rangeofDFSO.

(J) K-means clustering based on the expression of IFNA2, IFNB1 IFNL1, IFNL2,3, and IL1Bwas used to determine clusters 1–3 (cluster 1, n = 13; cluster 2, n = 12;

cluster 3, n = 6). The color indicates the relative gene expression. Viral load tercile, age group, and severity are annotated. Viral load terciles (‘‘+++,’’ ‘‘++,’’ and ‘‘+’’)

are defined by mean viral RNA CT (<20, >20 and <30, and >30). Age groups are defined as <70 or R70 years.

(K) IFNL1, IFNL2,3, IFNA2, IFNB1, and IL1B mRNA expression within clusters identified in (J). Each dot represents a patient. Violin plots are depicted.

(L) Percentage of patients with the indicated disease severity within clusters identified in (J).

(M) Odds ratio of patients in cluster 2 being hospitalized or admitted to the ICU relative to patients in cluster 3 (clusters identified in J). Symbols represent the odds

ratio. Error bars represent the 95% confidence interval associated with the odds ratio.

(A–H and K) Expression is plotted as log2 (gene/GAPDHmRNA + 0.53 gene-specific minimum). Statistics by test for difference between simple linear regression

slopes: ns, not significant (p > 0.05); *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 (A–H); two-way ANOVA: ns, not significant (p > 0.05); *p < 0.05; **p < 0.01;

***p < 0.001; ****p < 0.0001 (I); or chi-square test for odds ratio: ns, not significant (p > 0.05); *p < 0.05; **p < 0.01; ***p < 0.001 (L). See also Figure S2 and Table S3.
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or IL1B expression was analyzed, no positive correlation was

found in either hospitalized or HI patients (Figures 2D–2G). To

control for possible differences due to random sampling, we
4 Cell 184, 1–16, September 16, 2021
assessed how the viral load varies based on the day from

symptom onset in patients with different disease severity (Table

S3) and found no significant difference (Figure 2I).
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To further investigate the distribution of IFN-III production in

subjects with mild, severe, or critical illness, we performed K-

mean clustering based on the expression of IFN-I, IFN-III, and

IL-1b. Our results reveal that cluster 3, characterized by the high-

est expression of IFN-III, was enriched in patients with milder

disease manifestations and high viral load (Figures 2J–2M and

S2A–S2E). Notably, patients in cluster 2 (characterized by low

levels of IFN-III and the highest levels of IFN-I) were 10 times

more likely to have severe illness resulting in hospitalization or

ICU admission than patients in cluster 3, and patients in cluster

1 (that presented low IFN-I and IFN-III expression and high IL-

1b expression) showed a similar trend (Figures 2J–2M and

S2A–S2C). Overall, these data support the hypothesis that effi-

cient production of IFN-III in the upper airways of COVID-19 pa-

tients with high viral load protects against severe COVID-19.

IFN-l1 and IFN-l3, but not IFN-l2 or IFN-I, characterize
the upper airways of patients with mild COVID-19 and
drive ISGs that protect against SARS-CoV-2
To gain more insight into the transcriptional programs linked to

expression of specific IFN members, we used targeted RNA

sequencing (RNA-seq) to examine the swabs of a subset of

COVID-19 patients (Table S4). We found that IFN-l1 and IFN-

l3 (now distinguishable from IFN-l2 because of sequencing)

segregated with subjects with mild COVID-19 and a high viral

load compared to healthy controls or more severely ill COVID-

19 patients (Figure 3A). IFN-g was expressed in patients with

mild and severe COVID-19, while IFN-I and IFN-l2 were mostly

associated with critical, and to a lesser extent severe, patients

(Figure 3A). When gene set enrichment analysis was performed,

the IFN responses were the most significantly enriched in sub-

jects with mild (compared to severe or critical) COVID-19 (Fig-

ures 3B, S3A, and S3B). When compared to swabs from

SARS-CoV-2 negative subjects, patients with mild and severe,

but not critical, COVID-19 were enriched in IFN responses (Fig-

ure S3C). To determine whether the pattern of IFNs found in HI

patients drove a protective response against SARS-CoV-2, we

tested expression of >50 ISGs that directly restrain SARS-

CoV-2 infection (Martin-Sancho et al., 2021). RNA-seq data

demonstrate that only patients with mild manifestations effi-

ciently upregulated this set of protective ISGs (Figures 3C,

S3D, and S3E) and that this set of ISGs was significantly en-

riched compared to controls (Figure S3F).

Due to the high sequence identity of the IFN-III family mem-

bers (Broggi et al., 2020b), we next compared the capacity of

IFN-l1, IFN-l2, and IFN-l3 to induce specific ISGs. We stimu-
Figure 3. IFN-l1 and IFN-l3, but not IFN-l2 or IFN-I, characterize the

protect against SARS-CoV-2

(A–C) Targeted RNA-seq of nasopharyngeal swabs from SARS-CoV-2-negative

patients (HI; 5), hospitalized patients (HOSP; 7), ICU inpatients (ICU; 3). (A) Heatm

score. (B) Bubble plot visualization of gene set enrichment analysis (GSEA) for pa

(NES) is depicted. Color coding corresponds to �log10 (p adjusted value [padj])

picting expression of ISGs that protect against SARS-CoV-2. The color is propo

(D–G) Human bronchial epithelial cells (hBECs) were treatedwith human recombin

(D) IFIT3 (E), LY6E (F), andAPOL2 (G) mRNA expressionwas evaluated. Each dot r

compared to untreated cells. Statistics by two-way ANOVA: ns, not significant (p >

Table S4.

6 Cell 184, 1–16, September 16, 2021
lated human bronchial epithelial cells (hBECs) with different

IFN-IIIs and found that IFN-l1 induces and sustains the tran-

scription of several ISGs more efficiently than IFN-l2 and, to

some extent, IFN-l3 (Figures 3D–3G). Overall, our data demon-

strate that specific members of the IFN families associate with

mild or severe COVID-19, that the landscape of IFNs determines

the ISGs induced in the upper airways, and that IFN-l1 is

uniquely capable of inducing potent anti-SARS-CoV-2 ISGs in

patients with mild COVID-19.

Members of the IFN-III and IFN-I families are
overrepresented in the lower airways of COVID-19
patients
A detailed analysis of the IFNs produced in the lower airways of

SARS-CoV-2-infected subjects is lacking. We thus analyzed

BALF samples derived fromCOVID-19 HOSP patients, including

ICU-admitted subjects, and, as controls, samples derived from

patients with noninfectious lung pathologies (see Table S5 and

Figures S4A–S4C for details regarding sex and age distribution).

Transcripts of IFN-l2,3, IFN-b, IFN-a2, and IFN-a4were signif-

icantly upregulated in COVID-19 patients compared to controls

(Figures 4A–4F), while a similar percentage of subjects ex-

pressed the genes analyzed (Figures S4D–S4I). No difference

was observed for IL1B transcripts, while IL6 mRNA levels ap-

peared to be slightly increased in controls compared to

COVID-19 patients (Figures 4G, 4H, S4J, and S4K).

We next compared the expression of IFNs between the lower

and upper airways of COVID-19 patients with similar disease

severity. Sex and age were distributed as reported in Table S5.

We found that, except for IFN-l1, levels of IFNs in severe-to-crit-

ical patients were higher in the lower compared to the upper

airways (Figures 4I–4N), while a similar percentage of patients

expressed IFNs in the upper or lower respiratory tract, except

for IFN-a4 (Figures S4L–S4Q). IL1B mRNA levels were not

different in the upper and lower airways of hospitalized COVID-

19 patients, while IL6 transcripts appeared to be predominantly

expressed in the nasopharyngeal swabs compared to the BALF

(Figures 4O, 4P, S4R, and S4S). These data demonstrate that

selected members of both IFN-III and IFN-I families are overrep-

resented in the lower airways compared to the upper airways of

hospitalized COVID-19 patients.

Critical COVID-19 is characterized by the induction of a
similar IFN landscape in the upper and lower airways
We next performed RNA-seq of the BALF of a subset of ICU-iso-

lated patients and of subjects with noninfectious lung
upper airways of patients with mild COVID-19 and drive ISGs that

(NEG; 3) and positive patients with known disease severity: home-isolated

ap depicting expression of IFN-I/IFN-II/IFN-III. The color is proportional to the Z

thways enriched in HI, HOSP, and ICU patients. Normalized enrichment score

. Pathways with padj < 0.05 in either group are represented. (C) Heatmap de-

rtional to the Z score.

ant IFN-l1, IFN-l2, or IFN-l3 at a concentration of 2 ng/mL for 4 or 24 h.RSAD2

epresents a biological replicate.Medianwith range is depicted. FC, fold change

0.05); *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. See also Figure S3 and
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Figure 4. Members of the IFN-III and IFN-I families are overrepresented in the lower airways of COVID-19 patients

(A–H) IFNL1 (A), IFNL2,3 (B), IFNL4 (C), IFNB1 (D), IFNA2 (E), IFNA4 (F), IL1B (G), and IL6 (H) mRNA expression was evaluated in BALF from SARS-CoV-2-positive

(BALF POS; 26, red dot) and negative (BALF NEGCTRL; 24) patients with noninfectious lung involvement such as fibrosis (8, blue dot), sarcoidosis (8, green dot),

or lung transplant (8, purple dot).

(I–P) IFNL1 (I), IFNL2,3 (J), IFNL4 (K), IFNB1 (L), IFNA2 (M), IFNA4 (N), IL1B (O), and IL6 (P) mRNA expression was evaluated in BALF (BALF POS; 26) and swabs

(Swab POS; 21) from SARS-CoV-2-positive subjects who were either hospitalized (HOSP; black dots) or ICU inpatients (ICU; red dots).

(A–P) Expression is plotted as log2 (gene/GAPDHmRNA+ 0.53 gene-specificminimum). Each dot represents a patient.Medianwith range is depicted. Statistics

by Mann-Whitney test: ns, not significant (p > 0.05); *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. See also Figure S4 and Table S5.
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Figure 5. Critical COVID-19 is characterized by the induction of a similar IFN landscape in the upper and lower airways

(A–E) Targeted RNA-seq of BALF from SARS-CoV-2-positive patients (BALF ICU; 7), patients with noninfectious lung pathologies (BALF NEG CTRL; 5), and

nasopharyngeal swabs from SARS-CoV-2-positive patients who were either ICU inpatients (Swab ICU; 3), hospitalized (Swab HOSP; 7), or HI (Swab HI; 5). The

color is proportional to the Z score. (A) Bubble plot visualization of GSEA for pathways enriched in BALF ICU compared to BALF NEG CTRL samples. NES is

depicted. Color coding corresponds to�log10(p adjusted value [padj]), and size corresponds to the number of genes detected for each pathway. Pathways with

(legend continued on next page)
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pathologies (Table S6). Gene set enrichment analysis confirmed

that IFN responses characterize COVID-19 patients compared to

non-microbially infected patients (Figures 5A and 5B). In keeping

with the capacity of IFNs to increase apoptosis and facilitate lung

tissue damage (Broggi et al., 2020a; Major et al., 2020), gene

enrichment also revealed that the p53 pathway is significantly

upregulated in COVID-19 patients (Figures 5A and 5C). Notably,

the IFN landscape in the upper and lower airways of critical pa-

tients was strikingly similar (Figure 5D). Also, the induction of

ISGs that protect against SARS-CoV2 was significantly

decreased in the lower airways of critical COVID-19 patients

compared with the upper airways of patients with milder, as

well as similar, disease severity (Figures S5A–S5C). The gene

signatures in the upper airways of mildly ill patients, compared

with either the upper or lower airways of critical patients, were

enriched for pathways associated with the induction of ISGs

and other inflammatory pathways, (Figure 5E). In keeping with

the capacity of IFNs to dampen cell proliferation and delay tissue

repair (Broggi et al., 2020a; Major et al., 2020), gene programs

linked to proliferation were significantly downmodulated in the

lower airways of critical patients compared to the upper airways

of subjects with a mild disease (Figure S5D).

Overall, these data demonstrate that a unique IFN signature

characterizes severe-to-critical COVID-19 patients along the

respiratory tract and that the induction of unique set of IFNs is

coupled with the induction of either protective ISGs or gene pro-

grams associated with apoptosis and reduced proliferation.

A unique protein IFN signature characterizes the lower
airways of COVID-19 patients compared to patients with
other ARDS or noninfectious lung pathologies
Our data show unique patterns of IFN gene expression in the

lower airways of severe COVID-19 patients. However, whether

the relative distribution of the IFN members, as measured by

mRNA transcripts, correlates with their protein levels remains

unknown. We thus assessed protein levels of IFNs and other in-

flammatory cytokines in the BALF of subjects infected with

COVID-19 compared to the BALFs of patients with ARDS not

driven by SARS-CoV-2 or patients with noninfectious lung

involvement including fibrosis, sarcoidosis, or lung transplant

(hereafter referred to as ‘‘controls’’) (Table S7). In keeping with

results of the transcriptional analyses, the levels of IFN-III and

IFN-I measured in BALF from patients with COVID-19 were

elevated (Figures 6A–6D; STAR Methods) and, among IFN-III,

showed a predominant induction of IFN-l2,3 compared to IFN-

l1 (Figure S6A). IFN-III and IFN-I were also significantly upregu-

lated in COVID-19 patients relative to controls and when

compared to patients with ARDS of different etiologies (except

for IFN-l1) (Figure 6A–6D; STAR Methods). Also, we found no

correlation between age and protein levels in the lower airways

of severe COVID-19 patients (Figures S6B–S6H; STAR

Methods).
p value (pval)< 0.05 are depicted. (B and C) GSEA enrichment plot for genes belon

BALF NEG CTRL samples. (D) Heatmap depicting expression of IFN-I/IFN-II/IFN-

for pathways enriched in the lower airways of critical patients (BALF ICU) and the u

and Swab ICU). NES is depicted. Color coding corresponds to�log10(padj). Path

Table S6.
When we compared the protein levels in the BALF and plasma

of a subset of COVID-19 patients (STARMethods), no correlation

between these levels for any protein analyzed was found (Fig-

ures 6E–6J and S6I), confirming at the protein level the transcrip-

tional differences recently highlighted between the peripheral

blood and the lungs of COVID-19 patients (Overholt et al., 2021).

When we performed unbiased K-means clustering of the pro-

tein analyzed, we found that COVID-19 patients were signifi-

cantly enriched in cluster 3, which is characterized by a unique

signature of IFNs (which encompasses all three IFN families)

and IL-10 production (Figures 6K–6O; STAR Methods). Many

proinflammatory cytokines are also upregulated in cluster 2,

which is enriched in patients who have ARDS that is not driven

by SARS-CoV-2 (Figures 6L and S6J); most of these patients

also express IFN-l1, but not other IFNs. Control patients were,

in contrast, enriched in cluster 1, characterized by low proinflam-

matory cytokine and IFN responses (Figures 6L and S6K).

Overall, these data demonstrate that COVID-19 patients are

characterized by a unique IFN signature in the lower airways rela-

tive to patients with ARDS of different etiology.

Epithelial and immune cells dictate the IFN landscape
Based on the heterogenous induction of IFNs along the respira-

tory tract of COVID-19 patients with different disease severity,

we hypothesized that different populations of cells contribute

to production of specific IFNs by activating discrete pattern

recognition receptors (PRRs). Our finding that the mRNA for

IFNL1 is absent in the lower airways of COVID-19 patients (Fig-

ure 4A), but protein levels for IFN-l1 are present at the same

anatomical site (Figure 6A), suggests that cells that actively pro-

duce the mRNA for IFNL1 are underrepresented in the BALF.

However, IFNL1 is one of the most upregulated genes in the up-

per airways, supporting the hypothesis that the cells that pro-

duce it are highly represented in the swabs. We thus explored

the cellular composition of the swabs and BALF by deconvolut-

ing our bulk RNA-seq data (Figures 7A–7C, S7A, and S7B). We

found that the epithelial compartment, represented by several

epithelial cell lineages, is more represented than the hematopoi-

etic compartment in swabs from SARS-CoV-2-negative and

positive subjects (Figures 7A, 7C, and S7A). In contrast, BALF

from both SARS-CoV-2-negative and positive patients presents

very diversified hematopoietic populations (Figures 7B and S7B)

that are more represented than epithelial cells (Figure 7C).

We thus explored how epithelial cells, or phagocytes, differen-

tially contribute to the production of IFNs during a SARS-CoV-2

encounter (Figure 7D). We confirmed that polarized hBECs of

healthy individuals are sensitive to SARS-CoV-2 infection (Fig-

ure S7C) and respond by expressing IFNs (Figures 7E–7H) and

proinflammatorycytokines (FiguresS7DandS7E).Notably,hBECs

infected with SARS-CoV-2 mostly produced IFN-l1 compared to

other IFNs (Figures7E–7H).Amonghumanphagocytes,plasmacy-

toid dendritic cells (pDCs) respond to SARS-CoV-2 by producing
ging to the interferon alpha response (B) and p53 pathway (C) in BALF ICU and

III IFNs in BALF ICU and Swab ICU samples. (E) Dot plot visualization of GSEA

pper airways of patients with different disease severity (Swab HI, Swab HOSP,

ways with padj < 0.05 in any of the groups are depicted. See also Figure S5 and
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mainly IFN-I (Onodi et al., 2021). Based on the potent induction of

IFN-III in patientswithmild COVID-19,we focused our attention on

conventional DCs (cDCs) that we recently described asmajor pro-

ducers of IFN-III in the lungs of mice (Broggi et al., 2020a). Human

cDCs isolated from the blood of healthy donors did not produce

IFNs or other inflammatory cytokines when exposed to SARS-

CoV-2 in vitro (data not shown). To test the possible involvement

of cDCs during COVID-19, we infected a human lung epithelial

cell (hLEC) linewith SARS-CoV-2 and exposed cDCs to the super-

natant of these cells. We found that only cDCs exposed to the su-

pernatant of virally infected hLECs upregulated the expression of

IFN-l2,3 (but not IFN-l1), members of the IFN-I family, as well as

IL-1B and IL-6 (Figures 7I–7L, S7F, and S7G).

To identify the PRRs involved in the production of IFNs by

either human epithelial cells or cDCs, we tested different PRR li-

gands (Figure 7M). In keeping with a central role of the RIG-I/

MDA-5 pathway in epithelial cells for sensing SARS-CoV-2 (Liu

et al., 2021; Wu et al., 2021; Yin et al., 2021), stimulation of the

RIG-I pathway, and to a lesser extent of TLR3, in epithelial cells

potently induced the transcripts of IFN-III and IFN-I, but not of

other proinflammatory mediators (Figure S7H; STAR Methods).

The analysis of protein levels confirmed the transcriptional

data (Figures 7N, S7I, and S7J; STAR Methods). In keeping

with SARS-CoV-2 infection, epithelial cells were more potent

producers of IFN-l1 compared to IFN-l2,3 upon stimulation of

TLR3, RIG-I and MDA-5 pathways (Figures 7N and S7I).

We next evaluated the response of cDCs. As a comparison, we

also treated bulk peripheral blood mononuclear cells (PBMCs),

monocytes isolated from PBMCs, and monocyte-derived DCs

(moDCs). While PBMCs were particularly able to produce IFN-II

in response to viral and bacterial ligands, cDCs were uniquely

capable of producing very high levels of IFN-l2,3 and, to a lesser

extent, IFN-l1, solely in response to TLR3 stimulation (Figures 7O

and S7K–S7M; STAR Methods). Monocytes and moDCs were

poor producers of IFNs in response to all the stimuli tested.

When these analyses were extended to other inflammatory medi-

ators, each cell type revealed a unique pattern of protein produc-

tion (Figure S7N; STAR Methods), underscoring the complexity

and cell specificity of the inflammatory response.

Collectively, these data demonstrate that epithelial cells pref-

erentially produce IFN-l1 upon SARS-CoV-2 infection and sug-
Figure 6. A unique protein IFN signature characterizes the lower airw

noninfectious lung pathologies

(A–D) IFN-l1 (A), IFN-l2,3 (B), IFN-b (C), and IFN-a2 (D) protein levels were meas

(BALFNEGARDS; 5were diagnosedH1N1 and are depicted with orange dots, an

NEG CTRL; 10 affected by fibrosis are depicted with blue dots, 10 affected by sar

with purple dots). Each dot represents a patient. Median with range is depicted.

(E–J) IFN-l1 (E), IFN-l2,3 (F), IFN-b (G), IFN-a2 (H), IL-1b (I), and IL-6 (J) protein leve

plasma of the same patient. Each dot represents a patient. Linear regression lines (

depicted in red. Spearman correlation coefficients (r) and p value (p) are indicate

(K) Heatmap comparison of IFN-a2, IFN-b, IFN-g, IFN-l1, IFN-l2,3, IL-10, CXCL-

the BALF of COVID-19 (29), ARDS (9), transplant (10), fibrosis (10), and sarcoidos

amount of cytokine normalized for sample volume (picograms [pg]/lavage) of each

clustering was performed. Diagnosis, mortality, and age are annotated.

(L) Percentage of patients with the indicated diagnosis within clusters identified

(M–O) Odds ratio of containing COVID-19 patients in cluster 3 as compared to clu

identified in J).

Statistics by Kruskal-Wallis test with Dunn’s post hoc test: ns, not significant (p > 0

odds ratio: ns, not significant (p > 0.05); *p < 0.05; **p < 0.01; ***p < 0.001 (L–M)
gest that IFN production is driven via RIG-I/MDA-5 or TLR3

stimulation, that cDCs only respond to the supernatant of

SARS-CoV-2-infected cells, and that TLR3 is the major driver

of IFN-III production by human cDCs.

DISCUSSION

COVID-19 has caused millions of deaths and has had devas-

tating societal and economic effects. Notwithstanding the effi-

cacy of the COVID-19 vaccines, a better understanding of the

molecular underpinnings that drive the severe disease in pa-

tients infected with the SARS-CoV-2 virus is imperative to

implement effective additional prophylactic and/or therapeutic

interventions. IFN-I and IFN-III are potent antiviral cytokines,

and the potential of using clinical grade recombinant IFN-I or

IFN-III as therapeutics has raised much hope and interest

(Prokunina-Olsson et al., 2020). To date, though, opposing ev-

idence has complicated our view of the role played by mem-

bers of the IFN-I and IFN-III families during SARS-CoV-2

infection.

We found that in the upper airways of patients with mild man-

ifestations, the presence of IFN-l1 and IFN-l3, but not IFN-l2 or

IFN-I, was associated with the induction of ISGs known to effi-

ciently contain SARS-CoV-2. Our data also demonstrated that

critically ill patients express high levels of IFN-I (and IFN-l2)

compared to subjects with mild disease or healthy controls.

These patients show a reduced induction of protective ISGs

and, in general, IFN responses. Two non-mutually exclusive ex-

planations for this behavior may be that (1) the pattern of IFN

expression of critically ill patients is less capable of inducing

the protective ISGs; or (2) other factors, such as the production

of specific antibodies that block ISG induction (Combes et al.,

2021) or viral adaptation to evade control by IFN-I (Lei et al.,

2020; Xia et al., 2020), restrain the capacity of this set of IFNs

to mount a strong response.

The present in-depth analysis shows not only that high viral

loads of SARS-CoV-2 induce the efficient production of IFN-III

in the upper airways of younger and/or milder patients but also

that severely ill COVID-19 patients are characterized by the high-

est levels of IFNs (at the mRNA as well as protein levels) in the

lower airways. These data support the hypothesis that IFNs
ays of COVID-19 patients compared to patients with other ARDS or

ured in the BALF of COVID-19 (BALF POS; 29, depicted with red dots), ARDS

d the remaining 4 are depicted with brown dots), non-microbially infected (BALF

coidosis are depicted with green dots, and 10 transplant patients are depicted

ls in the BALF of COVID-19 patients (17) are plotted against protein levels in the

continuous line) and 95%confidence interval (dashed line and shaded area) are

d.

10, IL-1b, IL-6, tumor necrosis factor (TNF), IL-8, and IL12p70 protein levels in

is (10) patients. The color is proportional to the log10 transformed value of the

cytokine. Rows in each group represent different patients. Unbiased K-means

in (K).

ster 2 (M) and cluster 1 (N) and in cluster 2 as compared to cluster 1 (O) (clusters

.05); *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 (A–D) or chi-square test for

. See also Figure S6 and Table S7.
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have opposing roles along the respiratory tract and reconcile

some of the seemingly contradictory findings on IFNs in

COVID-19 patients. Efficient initiation of IFN production in the

upper airways can lead to a more rapid elimination of the virus

and may limit viral spread to the lower airways, as suggested

by studies that report defects in IFN signaling of severe

COVID-19 patients (Bastard et al., 2020; Pairo-Castineira et al.,

2021; Wang et al., 2021; Zhang et al., 2020). On the other

hand, when the virus escapes immune control in the upper air-

ways, the IFN production that is potently boosted in the lungs

likely contributes to the cytokine storm and associated tissue

damage that are typical of patients with severe-to-critical

COVID-19, characterized by reduced proliferation and increased

pro-apoptotic p53 transcriptional signatures.

Another novel finding in the present study is that the type of IFN

produced in response to different PRRpathways varies according

to cell types. In keeping with ACE2+ cells being the primary cells

infected by SARS-CoV-2, we measured a potent immune

response in hBECs, but not in cDCs, infected with SARS-CoV-2.

Nevertheless, we found that cDCs efficiently express specific

members of the IFN-III and IFN-I families when exposed to the su-

pernatant of lung epithelial cells previously infected with SARS-

CoV-2 or in response to double-stranded RNA (dsRNA). These

data suggest that cDCs, despite not responding directly to

SARS-CoV-2 infection,may play fundamental roles in recognizing

intermediates of viral replication and/or damage-associated mo-

lecular patterns (DAMPs) released by infected cells that are dying.

Finally, our findings highlight the importance of the timing of

production and/or administration of IFNs during COVID-19 and

suggest that early administration (before infection or early after

symptom onset) of specific recombinant IFN-III may be an

effective therapeutic intervention and that targeting the upper

airways, while avoiding systemic administration as previously

proposed (Park and Iwasaki, 2020), represents the best way to

exploit the antiviral activities of IFNs.

In conclusion, our data define the anatomical map of inter-

and intra-family production of IFNs during COVID-19 and
Figure 7. Epithelial and immune cells dictate the IFN landscape

(A–C) Targeted RNA-seq of nasopharyngeal swabs from SARS-CoV-2-positive pa

home-isolated (Swab HI; 4); SARS-CoV-2-negative (Swab NEG; 2) patients; an

noninfectious lung pathologies (BALF NEG CTRL; 3) was performed. Data were

datasets (Ziegler et al., 2021) using CIBERSORTx (Newman et al., 2019) to extrapo

in swab (A) and BALF (B) samples is depicted as a fraction of total cells. (C) Fract

Each dot represents a patient. Median with range is depicted.

(D) Schematic of experimental setup. hBECs were infected with SARS-CoV-2 for 2

with supernatants from hLECs, infected or not, for 24 and 48 h. Gene expression

(E–H) IFNL1 (E), IFNL2,3 (F), IFNB1 (G), and IFNA4 (H) mRNA expression was

represents a biological replicate. Median with range is depicted. Dashed line rep

(I–L) IFNL1 (I), IFNL2,3 (J), IFNB1 (K), and IFNA4 (L) mRNA expressionwas evaluate

CoV-2-infected hLECs. Each dot represent a technical replicate. Median with ra

(M) Schematic of experimental setup. hBECs, PBMCs, monocytes, cDCs, and mo

(I:C), or R848 for stimulation of RIG-I, STING, TLR9, TLR4, TLR3, or TLR7/8, respe

and cytokine production was evaluated in supernatants (created with BioRender

(N–O) Heatmap representation of IFN-a2, IFN-b, IFN-g, IFN-l1, and IFN-l2,3 prod

to the log10-transformed concentration (pg/mL) of each cytokine. (N) Rows in e

different donors as depicted in the annotation.

Expression is plotted as log2 (gene/HPRT1 or GAPDHmRNA + 0.53 gene-speci

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 (C) or one-way ANOVAwith Dunne

****p < 0.0001 (E–L). See also Figure S7 and STAR Methods.
highlight how IFN production is linked to the different clinical

outcomes, based on the location of the IFN response. Our

findings reconcile a large portion of the literature on IFNs

and further stress the key role played by IFN-III, compared

to IFN-I, at mucosal surfaces during life-threatening viral

infections. These findings will be fundamental for designing

appropriate pharmacological interventions to prevent infec-

tion with SARS-CoV-2 or dampen the severity of COVID-19

and will help to better understand how the IFN landscape

affects human immune responses to respiratory viral

infections.

Limitations of the study
Our findings shed new light on the nature of the IFNs and the

molecular pathways that drive intrinsic immunity. The capacity

of lung epithelial cells to recognize and respond to viral com-

ponents is confounded by the presence of SARS-CoV-2

effector proteins that block immune recognition and IFN pro-

duction (Banerjee et al., 2020; Konno et al., 2020; Lei et al.,

2020; Wu et al., 2021). We show that high viral load in the up-

per airways of COVID-19 patients induces a potent immune

response and that viral loads are not correlated per se with

disease severity. High viral loads in the upper airways may

therefore be associated with a protective immune response

in young individuals while eliciting a dysregulated inflamma-

tory response in older patients, as observed in our study.

Nevertheless, additional studies are needed to directly link

specific IFNs to particular cell types and, above all, specific

protective or detrimental immune cell functions. As an

example, our data suggest that cDCs do not directly sense

SARS-CoV-2. Intriguingly, a recent report showed that specific

cDC subtypes may instead directly respond to SARS-CoV-2

(Marongiu et al., 2021), but the capacity of these subtypes

to produce specific IFNs remains an open question. Further-

more, understanding the specific contribution of different

PRRs to the IFN response elicited in patients infected with

SARS-CoV-2 also requires further analyses.
tients who were ICU inpatients (Swab ICU; 3), hospitalized (Swab HOSP; 6), or

d BALF from SARS-CoV-2-positive patients (BALF POS, 7) and patients with

deconvoluted based on publicly available single-cell RNA-seq (scRNA-seq)

late the relative cellular composition of samples. (A and B) Each cell population

ion of epithelial or hematopoietic cells in swab and BALF samples is depicted.

4 and 48 h. hLECswere infected with SARS-CoV-2 for 72 h. cDCs were treated

was evaluated in hBECs and cDCs (created with BioRender).

evaluated in hBECs 24 and 48 h after infection with SARS-CoV-2. Each dot

resents limit of detection.

d in cDCs 24 and 48 h after treatmentwith supernatants of uninfected or SARS-

nge is depicted. Dashed line represents limit of detection. ND, not detected.

DCs were treated for 24 h with 3p-hpRNA/LyoVec, cGAMP, CpG(C), LPS, poly

ctively. Cytokine expression was evaluated on RNA extracted from cell lysates,

).

uction by hBECs (N) or cDCs (O) 24 h after treatment. The color is proportional

ach group represent a biological replicate. (O) Rows in each group represent

fic minimum) (E–L). Statistics by two-way ANOVA: ns, not significant (p > 0.05);

tt’s post hoc test: ns, not significant (p > 0.05); *p < 0.05; **p < 0.01; ***p < 0.001;
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-human

CD14 (clone HCD14)

BioLegend Cat#325621; RRID: AB_893252

Mouse monoclonal anti-human

HLA-DR (clone L243)

BioLegend Ca#307617; RRID: AB_493587

Mouse monoclonal anti-human CD11c (clone 3.9) BioLegend Cat#301607; RRID: AB_389350

Mouse monoclonal anti-human CD141 (clone M80) BioLegend Cat#344103; RRID: AB_1877220

Bacterial and virus strains

SARS-CoV-2 Isolate England/02/2020 Respiratory Virus Unit,

Public Health England, UK

GISAID accession number: EPI_ISL_407073

SARS-CoV-2 Isolate hCoV-19/Italy/UniSR1/2020 San Raffaele Hospital (Milan, Italy) GISAID accession number: EPI_ISL_413489

Biological samples

Nasopharyngeal swabs of 155

SARS-CoV-2 positive patients

San Raffaele Hospital (Milan, Italy) N/A

Nasopharyngeal swabs of 28

SARS-CoV-2 negative patients

San Raffaele Hospital (Milan, Italy) N/A

BALF of 26 SARS-CoV-2 positive patients San Raffaele Hospital (Milan, Italy) N/A

BALF of 26 SARS-CoV-2 positive patients San Raffaele Hospital (Milan, Italy) N/A

BALF of 29 SARS-CoV-2 positive patients Luigi Sacco Hospital (Milan, Italy) N/A

BALF of 63 SARS-CoV-2 negative patients

(5 ARDS H1N1+, 4 ARDS H1N1-, 18

Fibrosis, 18 Sarcoidosis, 18 Transplant)

IRCCS Policlinico San

Matteo Foundation (Pavia, Italy)

N/A

Blood collars from 11 healthy donors Boston Children’s Hospital

(Boston, MA USA)

N/A

Blood collar from 1 healthy donor San Raffaele Hospital (Milan, Italy) N/A

Chemicals, peptides, and recombinant proteins

LPS ENZO Cat# ALX-581-013-L002

Poly (I:C) HMW Invivogen Cat# tlr-pic

R848 Invivogen Cat# tlr-r848

CpG(C) Invivogen Cat# tlrl-2395

2030cGAMP Invivogen Cat# tlrl-nacga23-02

3p-hpRNA/LyoVec Invivogen Cat# tlrl-hprnalv

Lipofectamine 3000 Transfection Reagent Invitrogen Cat# L3000-008

Recombinant human IFN-l1 Peprotech Cat# 300-02L

Recombinant human IFN-l2 Peprotech Cat# 300-003K

Recombinant human IFN-l3 R&D Cat# 5259-IL

RPMI 1640 medium + GlutaMAX GIBCO Cat# 72400-047

Penicillin-Streptomycin GIBCO Cat# 15140122

FBS GIBCO Cat# 10437-028

DMEM GIBCO Cat# 11965-92

MEM non-essential amino acids solution GIBCO Cat# 11140050

HEPES buffer GIBCO Cat# 15630-080

MEM GIBCO Cat# 41090036

Histopaque Sigma Cat# 1077-1

GM-CSF PeproTech Cat# 300-03

IL-4 PeproTech Cat# 200-04

(Continued on next page)
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Critical commercial assays

FLOQSwabs COPAN Cat# 306C

Universal Transport Medium COPAN Cat# 306C

Cobas SARS-CoV-2 Test Roche Cat# P/N 09175431190

LEGENDplex BioLegend Cat# 740390

CD14 MicroBeads Miltenyi Biotec Cat# 130-050-201

CD141 (BDCA-3) MicroBead Kit Miltenyi Biotec Cat# 130-090-512

Pure Link RNA Micro Scale kit Invitrogen Cat# 12183016

SuperScript III First-Strand Synthesis System Invitrogen Cat# 18080051

Taqman Fast Advanced Master Mix Applied Biosystems Cat# 4444963

Power SYBR Green RNA-to-CT 1-step kit Applied Biosystems Cat# 4389986

SuperScript VILO cDNA Synthesis Kit Invitrogen Cat# 11754-05

Ion AmpliSeq Transcriptome Human

Gene Expression Kit

Ion Torrent Cat# A26325

Deposited data

Targeted transcriptomics raw data This study GEO Series accession number:

https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE182569

Targeted transcriptomics normalized

read matrix

This study Mendeley Data: https://doi.org/

10.17632/pczgwbkfzk.1

qPCR gene expression matrix This study Mendeley Data: https://doi.org/

10.17632/pczgwbkfzk.1

Cytokine expression matrix (BALF) This study Mendeley Data: https://doi.org/

10.17632/pczgwbkfzk.1

Cytokine expression matrix (Plasma) This study Mendeley Data: https://doi.org/

10.17632/pczgwbkfzk.1

Cytokine expression and gene

expression matrix (hBECs)

This study Mendeley Data: https://doi.org/

10.17632/pczgwbkfzk.1

Cytokine expression matrix (Human Phagocytes) This study Mendeley Data: https://doi.org/

10.17632/pczgwbkfzk.1

FACS plot of sorted and differentiated

human phagocytes

This study Mendeley Data: https://doi.org/

10.17632/pczgwbkfzk.1

Experimental models: Cell lines

NHBE Lonza Cat# CC-2540

Vero C1008 (Vero 76, clone E6, Vero E6) ATCC Cat# CRL-1586

Calu-3 ATCC Cat# HTB-55

Oligonucleotides

IFNL1 Taqman Gene Expression Assay Thermo Fisher Cat# Hs01050642_gH

IFNL2,3 Taqman Gene Expression Assay Thermo Fisher Cat# Hs04193047_gH

IFNL4 Taqman Gene Expression Assay Thermo Fisher Cat# Hs04400217_g1

IFNB1 Taqman Gene Expression Assay Thermo Fisher Cat# Hs01077958_s1

IFNA2 Taqman Gene Expression Assay Thermo Fisher Cat# Hs00265051_s1

IFNA4 Taqman Gene Expression Assay Thermo Fisher Cat# Hs01681284_sH

IL1B Taqman Gene Expression Assay Thermo Fisher Cat# Hs01555410_m1

IL6 Taqman Gene Expression Assay Thermo Fisher Cat# Hs00174131_m1

GAPDH Taqman Gene Expression Assay Thermo Fisher Cat# Hs99999905_m1

HPRT1 Taqman Gene Expression Assay Thermo Fisher Cat# Hs99999909_m1

RSAD2 forward primer

(GCTCTAAGAGAAGCAGAAAG)

Sigma N/A

RSAD2 reverse primer

(CATCTTCTGGTTAGATTCAGG)

Sigma N/A

(Continued on next page)

ll

e2 Cell 184, 1–16.e1–e6, September 16, 2021

Please cite this article in press as: Sposito et al., The interferon landscape along the respiratory tract impacts the severity of COVID-19, Cell
(2021), https://doi.org/10.1016/j.cell.2021.08.016

Article

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE182569
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE182569
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1
https://doi.org/10.17632/pczgwbkfzk.1


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

IFIT3 forward primer (ATGAGTGAGGTCACCAAG) Sigma N/A

IFIT3 reverse primer

(CCTTGAATAAGTTCCAGGTG)

Sigma N/A

LY6E forward primer (CATTGGGAATCTCGTGAC) Sigma N/A

LY6E reverse primer

(CACTGAAATTGCACAGAAAG)

Sigma N/A

APOL2 forward primer

(GAGAGCAGTATCTTTATTGAGG)

Sigma N/A

APOL2 reverse primer

(CAGTTGTAGCAGATTCTCTC)

Sigma N/A

UBC forward primer (CGTCACTTGACAATGCAG) Sigma N/A

UBC reverse primer

(TGTTTTCCAGCAAAGATCAG)

Sigma N/A

SARS-CoV-2 E gene forward primer

(ACAGGTACGTTAATAGTTAATAGCGT)

Tib-Molbiol N/A

SARS-CoV-2 E gene probe (FAM-ACACTA

GCCATCCTTACTGCGCTTCG-BBQ) (FAM: 6-

carboxyfluorescein; BBQ: blackberry quencher)

Tib-Molbiol N/A

SARS-CoV-2 E gene reverse primer

(ATATTGCAGCAGTACGCACACA)

Tib-Molbiol N/A

Software and algorithms

Transcriptome Analysis Console (TAC)

software with ampliSeqRNA plugin

ThermoFisher N/A

CIBERSORTx Newman et al., 2019 N/A

Fast Gene Set Enrichment Analysis package (fGSEA) Korotkevich et al., 2021 N/A

ComplexHeatmap package Gu et al., 2016 N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Ivan Zanoni

(ivan.zanoni@childrens.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Targeted transcriptomics data have been deposited at GEO and are publicly available as of the date of publication. Accession

numbers are listed in the Key resources table.

d Gene expression matrix from targeted transcriptomics, Gene expression matrix from qPCR experiments, cytokine expression

matrix from multiplex analysis of BALF, Plasma and supernatants of phagocytes are deposited at Mendeley and are publicly

available as of the date of publication. The DOI is listed in the Key resources table.

d The code used to analyze the data is available upon request to the corresponding authors.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical samples for gene expression analysis and targeted RNA-sequencing
Nasopharyngeal swabs were collected using FLOQSwabs� (COPAN Cat#306C) in UTM� Universal Transport Medium (COPAN

Cat#306C) from 155 SARS-CoV-2 positive patients and from 28 negative subjects undergoing screening for suspected social con-

tacts with SARS-CoV-2 positive subjects. Nasopharyngeal swabs were collected at San Raffaele Hospital (Milan, Italy) from April to

December 2020. BALF was obtained from 26 SARS-CoV-2-positive patients hospitalized at San Raffaele Hospital (Milan, Italy) from
Cell 184, 1–16.e1–e6, September 16, 2021 e3
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March to May 2020. BALF was obtained from 24 non-infected patients: lung fibrosis patients (8) were collected from May 2018 to

September 2020; sarcoidosis patients (8) were collected from August to July 2020; lung transplant patients (8) were collected

from January 2018 to September 2020 by IRCCS Policlinico San Matteo Foundation (Pavia, Italy). See Tables S1–S6 for patient in-

formation. All samples were stored at �80�C until processing. 500 mL of each BALF and swab sample were lysed and used for RNA

extraction (see RNA extraction protocol and Real-Time PCR for clinical samples and hBECs).

Clinical metadata were obtained from the COVID-BioB clinical database of the IRCCS San Raffaele Hospital. The study was

approved by the Ethics Committee of San Raffaele Hospital (protocol 34/int/2020). All of these patients signed an informed consent

form. Our research was in compliance to the Declaration of Helsinki.

Clinical samples for cytokine quantification in BALF and plasma
BALF from 29 SARS-CoV-2 positive patients hospitalized in the Intensive Care Unit (ICU) at Luigi Sacco Hospital (Milan, Italy) were

collected from September to November 2020. The total volume for each lavage was 120ml. Blood from 17 of these patients was also

collected on the same day. BALF from patients affected by ARDS (9 in total, 5 of which were diagnosed H1N1 influenza A virus) were

collected from February 2014 to March 2018. Samples from: lung fibrosis patients (10) were collected from May 2018 to September

2020; sarcoidosis patients (10) were collected from August to July 2020; lung transplant patients (10) were collected from January

2018 to September 2020 by IRCCS Policlinico San Matteo Foundation (Pavia, Italy). The total volume for each lavage was 150ml.

None of the patients affected by lung fibrosis, sarcoidosis or that received lung transplant was diagnosed a respiratory viral or bac-

terial infection. See Table S7 for patient information.

Research and data collection protocols were approved by the Institutional Review Boards (Comitato Etico di Area 1) (protocol

20100005334) and by IRCCS Policlinico San Matteo Foundation Hospital (protocol 20200046007). All patients signed an informed

consent form. Our research was in compliance to the Declaration of Helsinki.

Isolation of human phagocytes
Human phagocytes were isolated from collars of blood received from Boston Children’s Hospital blood donor center for in vitro stim-

ulations and from San Raffaele Hospital blood donor center for SARS-CoV-2 infections. Briefly, blood was diluted 1:2 in PBS and

PBMCs were isolated using a Histopaque (Sigma Cat# 1077-1) gradient. Monocytes were positively selected from PBMCs with

CD14MicroBeads (Miltenyi Biotec Cat# 130-050-201) byMACS technology. MoDCswere differentiated frommonocytes in the pres-

ence of GM-CSF 20ng/ml (PeproTech Cat# 300-03) and IL-4 20ng/ml (PeproTech Cat# 200-04) for 7 days.MoDCs differentiation was

tested for CD14 downregulation and HLA-DR expression. cDCs were positively selected from PBMCs with CD141 (BDCA-3) Mi-

croBead Kit (Miltenyi Biotec Cat# 130-090-512) by MACS technology. Purity and differentiation were assessed by FACS and repre-

sentative plots are available on Mendeley (see Key resources table)

hBECswere expanded in a T-75 flask to 60%confluence and then trypsinized and seeded either on 48well plates (2x105 cells/well)

for IFN stimulations or (3x104 cells/transwell) onto 0.4 mm pore size clear polyester membranes (Corning Cat# 3470) coated with a

collagen solution for PRR agonist stimulations and SARS-CoV-2 infections.

SARS-CoV-2 propagation and titration
For hBECs infection experiments with SARS-CoV-2, the isolate England/02/2020 (GISAID accession ID: EPI_ISL_407073) was prop-

agated and titrated in Vero E6 cells (ATCC Cat# CRL-1586). For cDCs infection experiments with SARS-CoV-2 the isolate hCoV-19/

Italy/UniSR1/2020 (GISAID accession ID: EPI_ISL_413489) was propagated and titrated in Vero E6 cells (ATCC Cat# CRL-1586). All

infection experiments were performed in a biosafety level-3 (BSL-3) laboratory.

Evaluation of SARS-CoV-2 RNA amount in clinical samples
The viral load was inferred on nasopharyngeal swabs through cycle threshold (Ct) determination with Cobas� SARS-CoV-2

Test (Roche Cat# P/N 09175431190), a real-time PCR dual assay targeting ORF-1a/b and E-gene regions on SARS-CoV-2

genome. The mean between ORF-1a/b and E Ct was used as an indirect measure of the viral load. Non-infectious plasmid

DNA containing a specific SARS-CoV-2 sequence and a pan-Sarbecovirus sequence is used in the test as positive control.

A non-Sarbecovirus related RNA construct is used as internal control. The test is designed to be performed on the automated

Cobas� 6800 Systems under Emergency Use Authorization (EUA). The test is available as a CE-IVD test for countries accept-

ing the CE-mark.

Culture of primary NHBE (hBECs) and Calu3 cells (hLECs)
NHBE (hBECs) were expanded in a T-75 flask to 60% confluence and then trypsinized and seeded either on 48 well plates (2x105

cells/well) for IFN stimulations or (3x104 cells/transwell) onto 0.4 mmpore size clear polyestermembranes (Corning Cat# 3470) coated

with a collagen solution for PRR agonist stimulations and SARS-CoV-2 infections.

Calu-3 (hLECs, ATCC Cat# HTB-55) were cultured in MEM (GIBCO Cat# 41090036) and supplemented with MEM non-essential

amino acids solution (GIBCO Cat#11140050), Penicillin-Streptomycin (GIBCO Cat#11140050), Sodium Pyruvate and 10% FBS

(GIBCO Cat#10437-028).
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METHOD DETAILS

In vitro stimulation and SARS-CoV-2 infection of hBECs
IFN stimulations were performed one day after seeding by treating cells with 2ng/ml IFN-l1, IFN-l2 and IFN-l3 for 4 and 24 hours.

Cell lysates were processed for RNA extraction as described below. For PRR agonist stimulations and SARS-CoV-2 infections

cells were grown in submersion until confluent, and then exposed to air to establish an air-liquid interface (ALI). At ALI day 15,

cells were stimulated with LPS (100 ng/ml), R848 (10 mg/ml), CpG(C) (1 mM), Poly (I:C) (50 mg/ml), Poly (I:C) (1 mg/106 cells) + Lip-

ofectamine, 3p-hpRNA/LyoVec (100 ng/ml), and cGAMP (10 mg /ml). Supernatants and cell lysates were collected 24 hours post

treatment. Supernatants were processed with LEGENDplexTM (BioLegend Cat# 740390) according to manufacturer’s instructions

and read by flow cytometry. Lysates were processed for RNA extraction as described below. For SARS-CoV-2 infections on day

15 of ALI cells were washed apically with PBS and infected at a multiplicity of infection (MOI) of 10�1 for 30 minutes at 37�C. The
inoculum was then removed, and cell lysates were collected at 24 or 48 hours post infection for RNA extraction as

described below.

Measurement of cytokine levels on BALF and plasma samples
BALF specimens from COVID-19 patients were managed in a biosafety level 3 laboratory until viral inactivation with a 0.2% SDS and

0.1% Tween-20 solution and heating at 65 �C for 15 min. Cell-free BALF supernatants were stored at � 20 �C until analysis. Blood

was centrifuged at 400 g for 10minutes without brake and plasmawas stored at� 20 �Cuntil analysis. Samples were processedwith

LEGENDplexTM (BioLegend Cat# 740390) according to manufacturer’s instructions and read by flow cytometry.

In vitro stimulation of human phagocytes with PRR agonists and supernatant from SARS-CoV-2-infected hLECs
PBMCs, monocytes, moDCs and cDCs were stimulated with LPS (100 ng/ml), R848 (10 mg/ml), CpG(C) (1 mM), Poly (I:C) (50 mg/ml),

3p-hpRNA/LyoVec (2.5 mg/ml), and cGAMP (10 mg/ml). Supernatants were collected 24 hours post treatment and stored at � 20 �C
until analysis. cDCs were also stimulated with conditioned media from hLECs. hLECs were infected or not with SARS-CoV-2 at an

MOI of 10�1 and supernatant was collected 72 hours post infection. Cell lysates were collected 24 and 48 hours after treatment for

RNA extraction as described below.

RNA extraction protocol and Real-Time PCR from clinical samples and hBECs
RNA was extracted from nasopharyngeal swabs, BALFs, hBECs (stimulated with PRR agonists, with IFNs and infected with SARS-

CoV-2) lysates and cDCs (stimulated with supernatant from SARS-CoV-2 infected hLECs) using Pure Link RNA Micro Scale kit (In-

vitrogen Cat# 12183016) according to manufacturer’s instruction, including in-column DNase treatment. Reverse transcription was

performed on all samples except IFN-treated hBECs using SuperScriptTM III First-Strand Synthesis System (Invitrogen Cat#

18080051) according to manufacturer’s instruction. qRT-PCR analysis was then carried out with TaqmanTM Fast Advanced Master

Mix (Applied Biosystems Cat#4444963) by using specific TaqmanTM Gene Expression Assays from Thermo Fisher. IFNL1

(Hs01050642_gH), IFNL2,3 (Hs04193047_gH), IFNL4 (Hs04400217_g1), IFNB1 (Hs01077958_s1), IFNA2 (Hs00265051_s1), IFNA4

(Hs01681284_sH), IL1B (Hs01555410_m1) and IL6 (Hs00174131_m1) expression was assessed with respect to the housekeeping

gene GAPDH (Hs99999905_m1) or HPRT1 (Hs99999909_m1). qRT-PCR was performed on IFN-treated hBECs with Power SYBR

Green RNA-to-CT 1-step kit (Applied Biosystems Cat#4389986) from Thermo Fisher using primers (Sigma) for the following genes:

UBC, RSAD2, IFIT3, LY6E, APOL2. Expression was assessed with respect to the housekeeping UBC. SARS-CoV-2 E gene expres-

sion in infected hBECs was quantified by real-time reverse transcription PCR. All transcripts were tested in triplicate for each sample

on ViiA7 Real-Time PCR System (Thermo Fisher) for clinical samples, on Quantastudio 3 Real-Time PCR System (Thermo Fisher) for

hBECs stimulated with PRR agonists and infected with SARS-CoV-2 and on CFX384 real time cycler (Bio-rad) for hBECs stimulated

with IFNs and cDCs infected with SARS-CoV-2.

Targeted Transcriptomics
For targeted transcriptome sequencing, RNA (15ng) isolated from clinical samples described in Tables S4 and S6 was retro-tran-

scribed to cDNA using SuperScript VILO cDNA Synthesis Kit (Invitrogen Cat# 11754-05). Barcoded libraries were prepared using

the Ion AmpliSeq Transcriptome Human Gene Expression Kit (Ion Torrent Cat# A26325) as per the manufacturer’s protocol and

sequenced using an Ion S5 system (Ion Torrent Cat# A27212). Differential gene expression analysis was performed using the Tran-

scriptome Analysis Console (TAC) software with the ampliSeqRNA plugin (ThermoFisher Scientific).

We used CIBERSORTx (Newman et al., 2019) to estimate the abundances of epithelial end hematopoietic cell types using using

bulk gene expression data as an input and scRNaseq signature matrices from single-cell RNA sequencing data to provide the refer-

ence gene expression profiles of pure cell populations. The scRNaseq signature matrix used to deconvolute RNaseq dataset from

swabs or BALFs were derived from Wauters et al. (2021) and Ziegler et al. (2021).

Gene set enrichment analysis and enrichment plot were generated in R using the Fast Gene Set Enrichment Analysis pack-

age (fGSEA) (Korotkevich et al., 2021). Heatmaps were generated in R and visualized with the ComplexHeatmap package (Gu

et al., 2016). Clustering analysis was performed using Euclidean distances on individual z-scores. Code available upon

request.
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QUANTIFICATION AND STATISTICAL ANALYSIS

One-way ANOVA with Turkey’s post hoc test was used to compare continuous variables among multiple groups. Kruskal-Wallis test

with Dunn’s post hoc test or Multiple Mann-Whitney tests with Holm-�Sı́dák method were used instead when data did not meet the

normality assumption. Fisher’s exact test was used to compare categorical variables. Spearman correlation analysis was used to

examine the degree of association between two continuous variables. To establish the appropriate test, normal distribution and vari-

ance similarity were assessed with the D’Agostino-Pearson omnibus normality test.

Cluster analysis with unbiased K-mean methods based on the expression of IFN-I, IFN-III and the proinflammatory cytokine IL-1b

were used to classify a subset of COVID-19 patients into 3 exclusive clusters.

Cluster analysis with unbiased K-mean methods based on the expression of Interferons and pro-inflammatory cytokines in the

BALF were used to classify COVID-19 patients, non-COVID-19 ARDS patients, and controls into 3 exclusive clusters. Heatmaps

and K-mean clustering were generated in R and visualized with the ComplexHeatmap package. Clustering analysis was performed

using Euclidean distances. Estimated (K) value was selected based on the elbow point cluster number. Logistic regression models

were performed to estimate the association of gene expression as binary outcome within viral load terciles (defined by mean viral

RNA CT < 20, > 20 and < 30, > 30), and clusters (cluster 1, cluster 2 and cluster 3). Interaction between viral load terciles and age

groups (R70 years versus < 70 years) were tested to detect significant difference between elder patients and young patients in their

gene expression response to different levels of viral load. All statistical analyses were two-sided and performed using Prism9 (Graph-

pad) software or SAS version 9.4 (SAS Institute). All statistical analyses are indicated in figure legends. Throughout the paper signif-

icant is defined as follows: ns, not significant (p > 0.05); *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

ADDITIONAL RESOURCES

A subset of samples included in this study were obtained from the following clinical trial: NCT04318366, https://www.clinicaltrials.

gov/ct2/show/NCT04318366.
e6 Cell 184, 1–16.e1–e6, September 16, 2021

https://www.clinicaltrials.gov/ct2/show/NCT04318366
https://www.clinicaltrials.gov/ct2/show/NCT04318366


Supplemental figures

Swab
 POS

Swab
 N

EG
0

50

100

150

Ag
e

ns

Swab
 POS

Swab
 N

EG
-15

-10

-5

0

IL
6/

G
AP

D
H

 m
R

N
A 

(L
og

2) ns

Swab
 POS

Swab
 N

EG
0

50

100

%
 s

am
pl

es

Expressed
Undetected

IFNA2
*

Swab
 POS

Swab
 N

EG
0

50

100

%
 s

am
pl

es

Expressed
Undetected

IFNL1

**

d

Swab
 POS

Swab
 N

EG
0

50

100

%
 s

am
pl

es

Expressed
Undetected

IFNL2,3

*

Swab
 POS

Swab
 N

EG
0

50

100

%
 s

am
pl

es

Expressed
Undetected

IFNL4
ns

1

%
 s

am
pl

es

Swab
 POS

Swab
 N

EG
0

50

100

%
 s

am
pl

es

Expressed
Undetected

IFNB1

**

Swab
 POS

Swab
 N

EG
0

50

100

%
 s

am
pl

es

Expressed
Undetected

IFNA4
ns

d

Swab
 POS

Swab
 N

EG
0

50

100

%
 s

am
pl

es

Expressed
Undetected

IL1B

*

Swab
 POS

Swab
 N

EG
0

50

100

%
 s

am
pl

es

Expressed
Undetected

IL6
ns

10203040
-15

-10

-5

0

5

Mean Viral RNA CT

IL
1B

/G
AP

D
H

m
R

N
A

(L
og

2)

r = -0.3737
p < 0.0001

10203040
-15

-10

-5

0

Mean Viral RNA CT

IL
6/

G
AP

D
H

m
R

N
A

(L
og

2)

r = -0.5735
p < 0.0001

Swab
 POS

Swab
 N

EG
-15

-10

-5

0

5

IL
1B

/G
AP

D
H

 m
R

N
A 

(L
og

2)

ns

+ ++ ++
+

0

50

100

%
 s

am
pl

es

Expressed
Undetected

IFNL4

ns
ns

Swab
 POS

Swab
 N

EG
0

50

100

150

200

# 
sa

m
pl

es Males
Females

Swab
 POS

Swab
 N

EG
0

50

100

%
 o

f t
ot

al Males
Females

A B C D E

F GG

K

+ ++ ++
+

0

50

100

%
 s

am
pl

es

Expressed
Undetected

IFNL1

*
***

d

+ ++ ++
+

0

50

100

%
 s

am
pl

es

Expressed
Undetected

IFNL2,3

ns***

+ ++ ++
+

0

50

100

%
 s

am
pl

es

IFNB1

ns
**

Expressed
Undetected

+ ++ ++
+

0

50

100

%
 s

am
pl

es

IFNA2

ns
ns

Expressed

Undetected

HHH

+ ++ ++
+

0

50

100

%
 s

am
pl

es

IFNA4

ns
ns

Expressed
Undetected

II

+ ++ ++
+

0

50

100

%
 s

am
pl

es

IL1B

ns
***

Expressed

Undetected

J

+ ++ ++
+

0

50

100

%
 s

am
pl

es

IL6

ns
***

Expressed

Undetected

0.1 1 10 10
0

10
00

++
+++

++
+++

70
<70

ns
####

IFNL1

Odds Ratio

ns

ns

0.1 1 10 10
0

+
++

+++
+

++
+++ 70

<70ns

ns

ns

### ***

IFNL2,3

Odds Ratio

LLL NNNNNNMMMMM OO

0.1 1 10 10
0

+
++

+++
+

++
+++ 70

<70ns
ns

#
ns

IFNL4

Odds Ratio

NE

0.1 1 10 10
0

+
++

+++
+

++
+++

ns

ns

ns

###

IFNB1

Odds Ratio

70
<70

ns

0.1 1 10

+
++

+++
+

++
+++

ns

ns

ns

#

IFNA2

Odds Ratio

70
<70

ns

P

0.1 1 10 10
0

+
++

+++
+

++
+++

ns

ns

ns

##

IFNA4

Odds Ratio

70
<70

*

QQQ

0.1 1 10 10
0

+
++

+++
+

++
+++ 70

<70ns

###
ns

IL1B

Odds Ratio

##

NE

RRRRRRRR

0.1 1 10 10
0
10

00

+
++

+++
+

++
+++ 70

<70
###

##
ns

IL6

Odds Ratio

ns

ns

SSSSS TT

U VV WWWW

10203040
-15

-10

-5

0

5

Mean Viral RNA CT

IL
1B

/G
AP

D
H

m
R

N
A

(L
og

2)

70
<70

ns r = -0.3114
p = 0.0146
r = -0.4235
p < 0.0001

XX Y

10203040
-20

-15

-10

-5

0

Mean Viral RNA CT

IL
6/

G
AP

D
H

m
R

N
A

(L
og

2)

70
<70

ns r = -0.6266
p < 0.0001
r = -0.5566
p < 0.0001

Z AAAA AB AC

AD AE AF AG

(legend on next page)

ll
Article



Figure S1. High viral loads drive the efficient production of IFN-III and, to a lesser extent, IFN-I in an age-dependent manner in the upper

airways of COVID-19 patients, related to Figure 1

(A-C) Age distribution (A), number (B) and percentage (C) of females and males in cohorts of patients (Swab NEG, Swab POS) analyzed in Figures 1A–1L and

Figures S1D–S1O. (A) Each dot represents a patient. Violin plots are depicted. (D, E) IL1B (D), and IL6 (E) mRNA expression was evaluated in nasopharyngeal

swabs from SARS-CoV-2-negative (Swab NEG) and -positive (Swab POS) subjects. Each dot represents a patient. Median with range is depicted. Dashed line

represents limit of detection. (F-M) Percentage of patients that express (Expressed, black bars) or not (Undetected, red bars) IFNL1 (F), IFNL2,3 (G), IFNL4 (H),

IFNB1 (I), IFNA2 (J), IFNA4 (K), IL1B (L), and IL6 (M) in Swab POS and Swab NEG cohorts. (N-O) IL1B (N), and IL6 (O) mRNA expression is plotted against mean

viral RNA CT in Swab POS cohorts. Each dot represents a patient. Linear regression lines (continuous line) and 95% confidence interval (dashed line and shaded

area) are depicted in red. Spearman correlation coefficients (r) and p value (p) are indicated. (P-W) Percentage of patients that express (Expressed, black bars) or

not (Undetected, red bars) IFNL1 (P), IFNL2,3 (Q), IFNL4 (R), IFNB1 (S), IFNA2 (T), IFNA4 (U), IL1B (V), and IL6 (W) in viral load tercile cohorts (‘‘+,’’ ‘‘++,’’ ‘‘+++’’). (X,

Y) IL1B (X), and IL6 (Y) mRNA expression is plotted against mean viral RNACT in swabs from SARS-CoV-2 positive patients over 70-year-old (R70, blue dots and

lines) and below 70-year-old (< 70, orange dots and lines). Each dot represents a patient. Linear regression (continuous lines), 95% confidence interval (dashed

line and shaded area), Spearman correlation coefficients (r) and p value (p) are indicated in blue and in orange forR 70 and < 70 year-old patients respectively. (Z-

AG) Odds ratio of expressing IFNL1 (Z) mRNA in ‘‘+++’’ with respect to ‘‘++’’ SARS-CoV-2 positive swabs and IFNL2,3 (AA), IFNL4 (AB), IFNB1 (AC), IFNA2 (AD),

IFNA4 (AE), IL1B (AF), and IL6 (AG) mRNA in ‘‘+++’’ and ‘‘++’’ with respect to ‘‘+’’ SARS-CoV-2 positive swabs inR 70 (blue dots and lines) and < 70 (orange dots

and lines) patients. Symbols represent the odds ratio. Error bars represent the 95% confidence interval associated to the odds ratio. NE: not estimable, AB) no

patient in group expresses IFNL4, AF) all patients in group express IL1B. (D, E, N, O, X, Y) Expression is plotted as log2 (gene/GAPDHmRNA+ 0.5 x gene-specific

minimum). Statistics: (A) Unpaired t test: ns, not significant (p > 0.05); *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (D, E) Mann-Whitney test: ns, not

significant (p > 0.05); *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (F-M and P-W) Fisher’s exact test with Bonferroni correction: ns, not significant (p >

0.05); *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (Z-AG) Odds ratio: ns, not significant (p > 0.05); #p < 0.05, ##p < 0.01, ###p < 0.001. Interaction

analysis: ns, not significant (p > 0.05); *p < 0.05, **p < 0.01, ***p < 0.001. See also Tables S1 and S2.
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Figure S2. MildCOVID-19 is characterized by high levels of IFN-III, but not IFN-I, in response to high viral loads in the upper airways, related to

Figure 2

(A) Number of samples from each disease severity group (HI = home-isolated, HOSP = hospitalized and ICU = Intensive care unit) within each cluster identified in

Figure 2J. (B-C) Odds ratio of patients in Cluster 1 being hospitalized or admitted to the ICU relative to patients in Cluster 3 (B) and Cluster 2 (C) (Clusters identified

in Figure 2J). Symbols represent the odds ratio. Error bars represent the 95% confidence interval associated to the odds ratio. (D-E) Percentage (D) and number

(E) of samples from each viral load tercile (‘‘+++,’’ ‘‘++,’’ ‘‘+’’) within each cluster identified in Figure 2J. Viral load terciles (‘‘+++,’’ ‘‘++,’’ ‘‘+’’) are defined by mean

viral RNA CT (< 20, > 20 and < 30, > 30). Statistics: (B-C) Chi Square test for odds ratio: ns, not significant (p > 0.05); *p < 0.05, **p < 0.01, ***p < 0.001. See also

Table S3.
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Figure S3. IFN-l1 and IFN-l3, but not IFN-l2 or IFN-I, characterize the upper airways of patients with mild COVID-19 and drive ISGs that

protect against SARS-CoV-2, related to Figure 3

(A-F) Targeted RNA-sequencing of nasopharyngeal swabs fromSARS-CoV-2 negative (NEG, 3) and positive patients with known disease severity: home-isolated

patients (HI, 5), hospitalized patients (HOSP, 7), ICU inpatients (ICU, 3). (A-B) Gene set enrichment analysis (GSEA) enrichment plot for genes belonging to the

interferon alpha response (HALLMARK Pathways) between HOSP and HI (A) and ICU and HI (B) cohorts of patients. (C) Normalized enrichment score (NES) and p

value of interferon alpha response geneset (HALLMARK Pathways) in HI, HOSP and ICU patients as compared to NEG. (D-E) GSEA enrichment plot for protective

ISG geneset (Curated Geneset derived from Martin-Sancho et al., 2021) between HOSP and HI (D) and ICU and HI (E) cohorts of patients. (F) Normalized

enrichment score (NES) of protective ISG geneset in HI, HOSP and ICU patients as compared to NEG. See also Table S4.
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Figure S4. Members of the IFN-III and IFN-I families are overrepresented in the lower airways of COVID-19 patients, related to Figure 4

(A-C) Age distribution (A), number (B) and percentage (C) of females and males in cohorts of patients (BALF POS, BALF NEG CTRL and Swab POS) analyzed in

Figure 4A-P. (A) Each dot represents a patient. Violin plots are depicted. (D-K) Percentage of patients in BALF from SARS-CoV-2-positive (BALF POS, 26) and

-negative (BALF NEG CTRL, 24) that express (Expressed, black bars) or not (Undetected, red bars) IFNL1 (D), IFNL2,3 (E), IFNL4 (F), IFNB1 (G), IFNA2 (H), IFNA4

(I), IL1B (J), and IL6 (K). (L-S) Percentage of patients (BALF POS, 26) and swabs (Swab POS, 21) from SARS-CoV-2-positive subjects that express (Expressed,

black bars) or not (Undetected, red bars) IFNL1 (L), IFNL2,3 (M), IFNL4 (N), IFNB1 (O), IFNA2 (P), IFNA4 (Q), IL1B (R), and IL6 (S). Statistics: (D-S) Fisher’s exact

test: ns, not significant (p > 0.05); *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. See also Table S5.
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Figure S5. Critical COVID-19 is characterized by the induction of a similar IFN landscape in the upper and lower airways, related to Figure 5

(A-C) Targeted RNA-sequencing of BALF fromSARS-CoV-2 positive patients (BALF ICU, 7), and from nasopharyngeal swabs fromSARS-CoV-2 positive patients

that were either ICU inpatients (Swab ICU, 3) hospitalized (Swab HOSP, 7) or home-isolated (Swab HI, 5). (A-C) GSEA enrichment plot for protective ISG genes

(curated Geneset derived fromMartin-Sancho et al., 2021) between Swab ICU and BALF ICU (A), Swab HOSP and BALF ICU (B), Swab HI and BALF ICU (C). (D)

GSEA enrichment plot for genes involved in the G2M checkpoint (HALLMARK Pathways) between Swab HI and BALF ICU. (A-D) NES: Normalized enrichment

score. See also Table S6.
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Figure S6. A unique protein IFN signature characterizes the lower airways of COVID-19 patients compared to patients with other ARDS or

non-infectious lung pathologies, related to Figure 6

(A) IFN-l1 and IFN-l2,3 protein levels were measured in the BALF of COVID-19 patients (29). Each dot represents a patient. Median and range are depicted.

Dashed line represents limit of detection. (B-H) IFN-l1 (B), IFN-l2,3 (C), IFN-b (D), IFN-a2 (E), IL-1b (F), IL-6 (G) and IFN-g (H) protein levels in the BALF of COVID-

19 patients (29) are plotted over age. (I) IFN-g protein levels in the BALF of COVID-19 patients (17) are plotted against protein levels in the plasma. (J-K) Odds ratio

of containing ARDS patients in Cluster 2 as compared to Cluster 3 (J) and of containing non-microbially infected control patients in Cluster 1 as compared to

Cluster 3 (K) (Clusters identified in Figure 6J) (B-I) Each dot represents a patient. Linear regression lines (continuous line) and 95%confidence interval (dashed line

and shaded area) are depicted in red. Spearman correlation coefficients (r) and p value (p) are indicated. Statistics: (A) Unpaired t test: ns, not significant (p > 0.05);

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (J-K) Chi Square test for odds ratio: ns, not significant (p > 0.05); *p < 0.05, **p < 0.01, ***p < 0.001. See also

Table S7.
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Figure S7. Epithelial and immune cells dictate the IFN landscape, related to Figure 7

(A-B) Sunburst plots representing cell population fractions in Swabs (A) and BALF (B) as identified in Figure 7A, B. (C-E) SARS-CoV-2 E gene (C), IL1B (D), IL6 (E)

mRNA expression was evaluated in hBECs 24 and 48 hours after infection with SARS-CoV-2. Each dot represents a biological replicate. Median with range is

depicted. Dashed line represents limit of detection. (F-G) IL1B (F), IL6 (G) mRNA expression was evaluated in cDCs 24 and 48 hours after treatment with su-

pernatants of uninfected or SARS-CoV-2-infected hLECs. Each dot represents a biological replicate. Median with range is depicted. Dashed line represents limit

of detection. (H-J) hBECswere treated with 3p-hpRNA/LyoVec, cGAMP, CpG(C), LPS, Poly (I:C) and R848 for stimulation of RIG-I, STING, TLR9, TLR4, TLR3 and

TLR7/8 respectively. (H) Heatmap representation of IFNL2,3, IFNL1, IFNB1, IFNA2,CCL5,OASL1, IL6, TNF and IL1BmRNA expression 24 hours after treatment.

The color is proportional to Log2 (Fold Change) of each gene. Rows in each group represent biological replicates distributed as indicated in the legend. (I) IFN-l1

and IFN-l2,3 production by hBECs treated for 24h with PRR ligands. Poly (I:C) (TLR3), 3p-hpRNA/LyoVec (RIG-I) and transfected Poly (I:C) (RIG-I/MDA5) were

used. Each dot represents a biological replicate. Median with range is depicted. (J) Heatmap representation of IL-8, CXCL10, IL-6 and IL-1b production 24 hours

after stimulation. The color is proportional to the Log10 transformed concentration (pg/ml) of each cytokine. Rows in each group represent a biological replicate.

(K-M) Heatmap representation of IFN-a2, IFN-b, IFN-g, IFN-l1 and IFN-l2,3 production by PMBCs (K), Monocytes (L), moDCs (M) 24 hours after treatment. The

color is proportional to the Log10 transformed concentration (pg/ml) of each cytokine. (N) Heatmap representation of IL-1b, IL-6, TNF-a, IL-8, IL-12p70, GMCSF,

IL-10 and CXCL10 production cDCs 24 hours after treatment. (J-N) The color is proportional to the Log10 transformed concentration (pg/ml) of each cytokine.

Rows in each group represent different donors as depicted in the annotation on the right. (C-E, F, G) Expression is plotted as log2 (gene/HPRT1 or GAPDH

mRNA + 0.5 x gene-specific minimum). Statistics: (C-E, F,G, I) One-Way ANOVA with Dunnett’s post hoc test: ns, not significant (p > 0.05); *p < 0.05, **p < 0.01,

***p < 0.001, and ****p < 0.0001. See also STAR Methods.
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